United States Patent

US009462037B2

(12) (10) Patent No.: US 9,462,037 B2
Danziger et al. 45) Date of Patent: Oct. 4, 2016
(54) DYNAMICALLY SIZING CHUNKS IN A 5,758,358 A 5/1998 Ebbo
PARTIALLY LOADED SPREADSHEET 5,761,669 A 6/1998 Montague et al.
MODEL 5,793,966 A 8/1998 Amstein et al.
5,895,476 A 4/1999 Orr et al.
5,930,813 A 7/1999 Padgett et al.
(71) Applicant: Google Inc., Mountain View, CA (US) 6006239 A 1211999 Bhansali ct al.
6,049,664 A 4/2000 Dale et al.
(72) Inventors: Joshua Ari Danziger, Metuchen, NJ 6,169,999 Bl 1/2001 Kanno
(US); Amod Karve, Clifton, NJ (US); 6,243,706 Bl 6/2001 Moreau et al.
’ . ’ ’ ’ 6,327,584 B1 12/2001 Xian et al.
Zac}‘.ary Erik Lloyd, Brooklyn, NY 6,330,046 Bl 122001 Ishitaka et al.
(US), Yossi Kahlon, Montclalr, NI 6,341,305 B2 1/2002 Wolfe
(US); Micah Lemonik, Great Neck, 6,342,906 Bl 1/2002 Kumar et al.
NY (US) 6,377,354 Bl 4/2002 Nguyen et al.
Continued
(73) Assignee: Google Inc., Mountain View, CA (US) ¢)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
%atserét lls SZX]t:)en]f ed4 70 { (aidjusted under 35 Bibi et al., “A Platform for Delivering Multimedia Presentations on
e (b) by ays. Cultural Heritage,” 2010 14th Panhellenic Conference on Informat-
(21) Appl. No.: 13/735,377 ics, pp. 175-179.
(Continued)
(22) Filed: Jan. 7, 2013
(65) Prior Publication Data Primary Examiner — Yves Dalencourt
US 2015/0195375 Al Jul. 9, 2015 (74) Attorney, Agent, or Firm — Ropes & Gray LLP
(51) Imt. ClL
GO6F 15/16 (2006.01) (57) ABSTRACT
HO4L 29/08 (2006.01))))
GO6F 17/22 (2006.01) A method for managing a dynamically-sized chunked
GO6F 1724 (2006.01) spreadsheet model on a server includes creating, on the
(52) US. CL server, a plurality of chunks representing a spreadsheet,
CPC HO4L 67/06 (201301) GOG6F 1772288 where a first chunk in the plurality of chunks includes a first
(201301) GO6F 17/246 (’201301) HO4L range of cells in the spreadsheet. The method further
’ 67/1002 (2613.01) includes storing on the server a mutation log for the spread-
(58) Field of Classification Search sheet, and receiving a first plurality of mutations from a
CPC HO4L 67/42: HO4L 67/1002: HOAL plurality of client computers, where the first plurality of
"""""""" 65/1097: G0,6F 7/00: GO6F ’ll /1448 mutations are stored in the mutation log. The method further
See application file for,complete see;rch history. includes applying the first plurality of mutations to the first
chunk in response to a first client computer in the plurality
(56) References Cited of client computers requesting the first range of cells, and

U.S. PATENT DOCUMENTS

5,528,743 A 6/1996 Tou et al.

900 ~

sending the first chunk to the first client computer.

22 Claims, 6 Drawing Sheets

902~

Create a Plurality of Chunks
on a Server

904 1

Store a Global Mutation Log
on the Server

906 1

Receive Mutations from a
Plurality of Client Computers

9208 l

Apply the Mutations to the
First Chunk

910 !

8enc the First Chunk to the
Client Computer

US 9,462,037 B2

Page 2
(56) References Cited 2005/0234943 A1 10/2005 Clarke
2006/0031751 Al 2/2006 Ehud
U.S. PATENT DOCUMENTS 2006/0075332 Al 4/2006 Fairweather et al.
2006/0101071 Al 5/2006 Henderson
6.418.441 Bl 7/2002 Call 2006/0200755 Al 9/2006 Melmon et al.
6,501,779 Bl 12/2002 McLaughlin et al. 2006/0230344 Al 10/2006 Jennings et al.
6,512,531 Bl 1/2003 Gartland 2006/0248121 Al 11/2006 Cacenco et al.
6,662,210 Bl 12/2003 Carleton et al. 2007/0033654 Al 2/2007 Wilson
6,705,584 B2 3/2004 Hiroshima et al. 2007/0061714 Al 3/2007 Stuple et al.
6,717,593 Bl 4/2004 Jennings 2007/0070066 Al 3/2007 Bakhash
6.737.289 B2 5/2004 Woo et al. 2007/0073899 Al 3/2007 Judge et al.
6:879:997 Bl 4/2005 Ketola et al. 2007/0094601 Al 4/2007 Greenberg et al.
6,967,704 B2 11/2005 Hoshino 2007/0186157 Al 82007 Walker et al.
6,972,748 Bl 12/2005 Lang 2007/0208992 Al 9/2007 Koren
6,983,416 Bl 1/2006 Bae et al. 2007/0220068 Al 9/2007 Thompson et al.
7.009.626 B2 3/2006 Anwar 2007/0233811 Al 10/2007 Rochelle et al.
7.026.100 B2 4/2006 Nakata ef al. 2007/0239695 Al 10/2007 Chakra et al.
7.031.954 Bl 4/2006 Kirsch 2007/0279572 Al 12/2007 Yonemura
7035910 Bl 4/2006 Dutta et al. 2007/0288637 Al 12/2007 Layton et al.
7.039.643 B2 5/2006 Sena et al. 2007/0299857 Al 12/2007 Gwozdz et al.
7,231,597 Bl 6/2007 Braun et al. 2008/0028302 Al 1/2008 Meschkat
7,233,951 Bl 6/2007 Gainer et al. 2008/0040659 Al 2/2008 Doyle
7,287,094 B2 10/2007 Mogul 2008/0059539 Al 3/2008 Chin et al.
7,437,421 B2 10/2008 Bhogal et al. 2008/0082604 Al 4/2008 Mansour et al.
7478330 Bl 1/2009 Branson et al. 2008/0126943 Al 5/2008 Parasnis et al.
7487448 B2 2/2009 Emerson et al. 2009/0112990 Al 4/2009 Campbell et al.
7.491.399 B2 2/2009 Vakharia 2009/0192845 Al 7/2009 Gudipaty et al.
7.529.778 Bl 5/2009 Dewey et al. 2009/0235181 A1 9/2009 Saliba et al.
7,624,145 B2 11/2009 Junuzovic et al. 2009/0276455 Al 11/2009 Yu et al.
7.656.543 B2 2/2010 Atkins 2009/0328063 Al 12/2009 Corvera et al.
7680.932 B2 3/2010 Defaix et al. 2010/0030578 A1 2/2010 Siddique et al.
7’698’379 B2 4/2010 Dutta et al. 2010/0083096 Al 4/2010 Dupuis-Latour et al.
7.712.016 B2 5/2010 Jones et al. 2010/0107048 Al 4/2010 Takahara
7,774,703 B2 8/2010 Junuzovic et al. 2010/0153948 Al 6/2010 Schreiber et al.
7,792,788 B2 9/2010 Melmon et al. 2010/0218099 Al 8/2010 van Melle et al.
7,836,148 B2 11/2010 Popp et al. 2010/0235763 Al 9/2010 Massand
7.890.928 B2 2/2011 Patrudu 2010/0241749 Al 9/2010 Rasmussen et al.
7920.240 B2 4/2011 Yonemura 2010/0245256 A1 9/2010 Estrada et al.
7953.696 B2 5/2011 Davis et al. 2010/0251122 Al 9/2010 Lee et al.
7.058.448 B2 6/2011 Fattic, II ef al. 2011/0055329 Al 3/2011 Abt, Jr. et al.
7,983,416 B2 7/2011 Takashima et al. 2011/0066957 Al 3/2011 Prats et al.
8,019,780 Bl 9/2011 Pinkerton et al. 2011/0085211 Al 4/2011 King et al.
8,044,961 B2 10/2011 Opstad et al. 2011/0154185 Al 6/2011 Kern et al.
8,065,604 B2 11/2011 Blankinship 2011/0178981 Al 7/2011 Bowen et al.
8.073.812 B2 12/2011 Curtis et al. 2011/0252300 A1 10/2011 Lloyd et al.
8327.127 B2 12/2012 Suryanarayana et al. 2011/0252339 Al 10/2011 Lemonik et al.
8327.812 B2 12/2012 Vuk 2011/0302194 Al* 12/2011 Gonzalez et al. 707/769
81395.733 B2 3/2013 Ataka et al. 2011/0302237 Al 12/2011 Knight et al.
2001/0033917 Al 10/2001 Sogabe et al. 2012/0072819 Al 3/2012 Lindner et al.
2002/0032701 Al 3/2002 Gao et al. 2012/0110445 Al 5/2012 Greenspan et al.
2002/0035580 Al 3/2002 Tanabe 2012/0159298 Al 6/2012 Fisher et al.
2002/0091747 Al* 7/2002 Rehg et al.ccocorrvvnne 709/107 2012/0331373 Al ~ 12/2012 Lindner et al.
2002/0095399 Al 7/2002 Devine et al. 2013/0007183 Al* 1/2013 Sorenson et al. 709/213
2002/0133492 Al 9/2002 Goldstein et al. 2013/0159832 Al 6/2013 Ingargiola et al.
2002/0174085 Al 11/2002 Nelson et al. 2013/0262974 Al* 10/2013 Anstiscccooe. GO6F 17/246
2003/0009603 Al 1/2003 Ruths et al. 715/217
2003/0014406 Al 1/2003 Faieta et al.
2003/0014513 Al 1/2003 Ruths et al.
2003/0018719 Al 1/2003 Ruths et al. OTHER PUBLICATIONS
2003/0037076 Al 2/2003 Bravery et al. ; « ; »
2003/0037303 Al 22003 Bodlaender et al.]liélésg et a1.3, . 9C:‘)8;urrency Control in Groupware Systems,” ACM
2003/0084078 Al 5/2003 Torii et al. » PP 0550/) . .
2003/0115268 Al 6/2003 Esposito Huang et al., “A General Purpose Virtual Collaboration Room,
2003/0179230 Al 9/2003 Seidman Google 1999, pp. 1-9. R .
2004/0015781 Al 1/2004 Brown et al. Pacull et_al., Duplex: A Distributed Collaborative Editing Envi-
2004/0044965 Al 3/2004 Toyama et al. ronment in Large Scale,” ACM 1994, pp. 165-173. o
2004/0085354 Al 5/2004 Massand Cairns et al., “System and Method of Document Embedding in
2004/0088374 Al 5/2004 Webb et al. Collaborative Editors,” unpublished U.S. Appl. No. 13/493,672,
2004/0088653 Al 5/2004 Bell et al. filed Jun. 11, 2012, 1-48. _
2004/0133444 Al 7/2004 Defaix et al. Ellis et al., Groupware Some Issues and Experiences, Communi-
2004/0215672 Al 10/2004 Pfitzner cations of the Association for Computing Machinery, ACM, 34:1,
2004/0215825 Al 10/2004 Pfitzner Jan. 1, 1991,38-58.
2004/0215826 Al 10/2004 Pfitzner Cairns, “System and Method of Secure Communication Between
2004/0216090 Al 10/2004 Kaler et al. Multiple Child Frames,” unpublished U.S. Appl. No. 13/493,798,
2005/0091291 Al 4/2005 Kaler et al. filed Jun. 11, 2012, 1-47.
2005/0125461 Al 6/2005 Filz Day-Richter et al., “System and Method for Managing Remote
2005/0131887 Al 6/2005 Rohrabaugh et al. Procedure Calls Relating to a Third Party Software Application,”
2005/0185636 Al 8/2005 Bucher unpublished U.S. Appl. No. 13/591,851, filed Aug. 22, 2012, pp.
2005/0200896 Al 9/2005 Narusawa et al. 1-98.

US 9,462,037 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Day-Richter et al., “System and Method for Performing Data
Management in a Collaborative Development Environment,”
unpublished U.S. Appl. No. 13/591,734, filed Aug. 22, 2012, pp.
1-101.

Grieve et al., “Systems and Methods for Collaborative Document
Editing,” unpublished U.S. Appl. No. 13/297,762, filed Nov. 16,
2011, pp. 1-49.

Kjaer, “Timing and Synchronization in JavaScript”, Dev. Opera,
Sections:“The Basics”, “Event Queing”, “Long Running Scripts”
and “Advice on Timing”, Feb. 27, 2007, downloaded from URL:
http/dev.opera.com/articles/view/timing-and-synchronization-
injavascript/, pp. 1-9.

Lemonik et al., “System and Method for Providing Data Manage-
ment Services,” unpublished U.S. Appl. No. 13/224,860, filed Sep.
2, 2011, pp. 1-88.

Lemonik et al., “System and Method for Using a Third-Party
Add-On in a Collaborative Online Software Development Environ-
ment,” unpublished U.S. Appl. No. 13/551,859, filed Jul. 18, 2012,
1-103.

Lemonik et al., “System and Method for Providing Access to a
Document Associated with a Third Party Software Application Via
Interframe Communication,” unpublished U.S. Appl. No.
13/224,769, filed Sep. 2, 2011, pp. 1-90.

Lemonik et al., “System and Method for Providing Real-Time
Collaborative Document Editing Services,” unpublished U.S. Appl.
No. 13/224,573, filed Sep. 2, 2011, pp. 1-90.

Lemonik et al.,, “System and Method for Updating an Object
Instance Based on Instructions Received from Multiple Devices,”
unpublished U.S. Appl. No. 13/282,636, filed Oct. 17, 2011, pp.
1-91.

Lemonik et al.,, “System and Method for Updating an Object
Instance Based on Instructions Received from Multiple Devices,”
unpublished U.S. Appl. No. 13/224,479, filed Sep. 2, 2011, pp. 1-91.
Lemonik et al., “System and Method for Using a Third-System and
Method for Using a Third-Party Add-On to Manipulate a Document
in a Collaborative Online Software Development Environment,”
unpublished U.S. Appl. No. 13/551,772, filed Jul. 18, 2012, 1-119.
Lemonik et al., “System and Method to Provide Collaborative
Document Processing Services Via Interframe Communication,”
unpublished U.S. Appl. No. 13/224,663, filed Sep. 2, 2011, pp. 1-90.
Pereira et al., Merging Electronic Document Redraws, unpublished
U.S. Appl. No. 13/282,753, filed Oct. 27, 2011, pp. 1-30.

Pereira et al., Merging Electronic Document Redraws, unpublished
U.S. Appl. No. 13/006,259, filed Jan. 13, 2011, pp. 1-30.

Quinn, “Comparing Online vs. Traditional Office Software, Will
desktop or online office software fit your non-profit needs best?”
May 21, 2010, courtesy of Idealware, TechSoup.org [online].
Retrieved from the Internet L:http://www.techsoup.org/learning.
center/software/pagel1852.cfm (4 pp.).

Sun et al., “Operational Transformation in Real-Time Group Edi-
tors: Issues, Algorithms, and Achievements,” 1998, ACM Confer-
ence on Computer-Supported Cooperative Work, pp. 1-10.

Shen et al., “Flexible Merging for Asynchronouse Collaborative
Systems,” Griffith University, School of Computing an Information
Technology, Brisbane, Australia 2002 (18 pages).

Tyson, Herb, “Microsoft Word 2007 Bible,” 2007, pp. 112-115, p.
467, pp. 523-525, p. 798.

Wikipedia, the free encyclopedia, “Model-View-Controller,” down-
loaded on Nov. 16, 2010 [online]. Retrieved from the Internet:
URL:http://en.wikipedia.org/wiki/
Modei%E2%80%93view%E2%80%93controller, pp. 1-10.

Citro, “Conflict Management for Real-Time Collaborative Editing
in Mobile Replicated Architectures,” 2007, Australian Computer
Society, Inc., Thirteenth Austrailian Computer Science Conference
(ACSC2007), pp. 115-124.

Conner, Zoho 4 Everyone, 2008, downloaded from the internet
http://techbus.safaribooksonline.com/
print?xmlid=9780768687835/ch0l1levl secl, Aug. 21, 2012, p.
1-17.

DeJean, David, “Online office apps get real: Google Docs vs.
ThinkFree vs. Zoho, Web-based suites have become real challengers
to desktop applications,” Jul. 16, 2008, Computerworld [online].
Retrieved from the Internet: <URL: http://www .computerworld .
com/s/article/pri nt/91 08799/0n line office apps get real
Google D ocs vs ThinkFree vs. Zoho> (7 pp.).

Wikipedia, “Operational Transformation,” http://en.wikipedia.org/
wiki/Operation__transformation, Jun. 3, 2008. Retrieved from Inter-
net: http://web.archive.org/web/2008060306 1805/http://en.
wikipedia.org/wiki/Operational__transformation.

Unpublished U.S. Appl. No. 13/224,530, filed Sep. 2, 2011.
Unpublished U.S. Appl. No. 13/274,382, filed Oct. 17, 2011.
Unpublished U.S. Appl. No. 13/166,844, filed Jun. 23, 2011.
Wang et al. Google Wave Operational Transformation, Jul. 1, 2010,
1-6, retrieved from the Internet Feb. 14, 2012: http:/1 wave-
protocol.googlecode.comthg/Whitepapers/operational -transform/
operational -transform.html.

Googlepedia: The Ultimate Google Resource, Third Edition, pp.
276-287 (2008).

Hodel et al., “Supporting Collaborative Layouting in Word Pro-
cessing,” University of Zurich, Department of Inforamtics; Zurich,
Switzerland, 2004 (18 page).

Holzer, “Google Docs 4 Everyone” http://www.scribd.com/doc/
14119795/Google-Docs-4-Everyone Published Feb. 2009.

Ignat et al., “Awareness of Concurrent Changes in Distributed
Software Development,” Nancy-Universite, France 2008 (9 pages).
Ignat et al., “CoDoc: Multi-mode Collaboration over Docuemtns,”
ETII Surich,Institute for Information Systems; Zurich, Switzerland,
2004 (15 pages).

Raman, “Cloud Computing and Equal Access for All,” Google Inc.
2008 (4 pages).

Shen et al., “Integrating Advanced Collaborative Capabilitites into
Web-Based Word Processors,” Nauyang Technological University,
School of Computer Engineering, Singapore 2007 (8 pages).
Using Adobe Buzzword, 2008, pp. 1-35.

Nasir et al., “Collaborative Report Creation System for Industrial
Use,” Yamagata University, Graduate School of Science and Engi-
neering; Yamagata, Japan 2009 (6 pages).

Cayenne-McCall, “Synchronous 3D Document Collaboration,”
Pace University, Department of Computer Science; Nov. 2008. (42
Pages).

Abraham et al., “Mutation Operators for Spreadsheets,” Software
Engineering, IEEE Transactions on, vol. 35, No. 1, pp. 94,108,
Jan.-Feb. 2009 doi: 10.1109/TSE.2008.73 URL: http://ieeexplore.
ieee.org/stamp/stamp.j sp?tp=&arnumber=46093 89
&isnumber=4771845.

* cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 6 US 9,462,037 B2

202~ 204~ 206~
CPU ROM RAM

~212

208~

/O
Interface

FlG. 2

U.S. Patent

3
o]
oo

Oct. 4, 2016

Sheet 2 of 6

US 9,462,037 B2

> 302

> 304

SetAZ2 =2

SetAd =4

Set B3 = AZ2+A3

SetC10 = A2 x A3

SetES=B3 + C10

sSetD1=3

setDi12=7

SetA3d=5

Delete Row 6

Add Row 11

SetkE4 =9

Sa
&2
[~
rm%‘““mlﬁ@“”m@ﬁw;::/ PR Y I Py ok iecl Rt Hopd (4] EEg (][A0] BN

Delete D12

FIG. 4

Snapshot &1

Snapshot 52

U.S. Patent Oct. 4, 2016 Sheet 3 of 6 US 9,462,037 B2

500~
A B C D -
1 h
2 2
3 4 &)
4 > 502
5
6
7
3 <
9 14
10 8
11 > 504
12
13
14 J
FIG. 5
600~
602~ 604~
AZA3 — B3 AZAZ — C10
AZ:A3 — (10 B3:C10 — E&
B3:C10 — E8

FIG. 6

U.S. Patent Oct. 4, 2016 Sheet 4 of 6 US 9,462,037 B2

A B C D =
1 3 A
2 2
3 5 7
4 > 702
5
5]
7
: 7
9 10
10
11 > 704
12 7
13
14 p,
FIG. 7
800~
802~ 804~
AZA3 —= B3 AZ:AZ —= (8
AZ2A3 — (9 B3 00 — E8
B3:.C9 —= k8

U.S. Patent Oct. 4, 2016

Q@@“\

902~

Sheet 5 of 6

US 9,462,037 B2

Create a Plurality of Chunks

on a Server

904~

}

i

on the

Store a Global Mutation Log

Server

906~

k

y

Receive Mutations from a
Plurality of Client Computers

908~

k

y

Apply the Mutations to the

First Chunk

910~

k

1

Send the First Chunk to the
Client Computer

FiG.

9

U.S. Patent Oct. 4, 2016 Sheet 6 of 6 US 9,462,037 B2

Create a Plurality of Chunks
on a Server

1004"\\ ¥

Store a Global Mutation Log
on the Server

10068~ v

Receive a First Set of
Mutations from a Plurality
of Client Computers

1098"\‘ ¥

Take a Snapshot of the
First Chunk

“EGAES""\ ¥

Receive a Second Set of
Mutations from the Plurality
of Client Computers

1012\ ¥

Apply Second Set of
Mutations to the Snapshot

1@14"\ v

Send the Modified
Snapshot to the Client
Computers

FiG. 10

US 9,462,037 B2

1
DYNAMICALLY SIZING CHUNKS IN A
PARTIALLY LOADED SPREADSHEET
MODEL

BACKGROUND

Cloud storage systems provide users with the ability to
store electronic documents and other files on a remote
network rather than on a local computer. This allows users
the ability to access the remotely stored files from any device
that is capable of connecting with the remote network, for
example using a web browser over an Internet connection.
Users typically log into an account on the cloud storage
system using a username and password. The cloud storage
system provides a user interface for users to view, edit, and
manage files stored on the system. Cloud storage systems
also provide users the ability to share files with other users
and to allow collaboration between users on the same file.

One type of file that may be stored in a cloud storage
system is a spreadsheet. Spreadsheets are usually arranged
as a set of rows and columns that define cells, where each
cell may contain data, formulae, or other information.
Spreadsheets range in size and larger spreadsheets may
contain many rows or columns of information. Typically,
when a file from a cloud storage system is loaded onto a
client computer the data contents of the entire file are sent
from the server to the client computer. For large spread-
sheets, the amount of data may range in the megabytes or
above. Downloading the information to the client computer
may take a long time and may also slow down the rendering
process on the client computer. In addition, if a user only
wants to edit a certain portion of the spreadsheet, loading the
entire spreadsheet onto the client computer wastes time and
resources.

SUMMARY

The systems and methods described herein provide a data
structure of a spreadsheet in a cloud storage system that may
be quickly loaded onto a client computer regardless of the
size of the spreadsheet. Only a portion of the spreadsheet
may be loaded at a time, with other portions of the spread-
sheet loaded as needed by the user. A cloud storage system
includes one or more servers for storing files for a user,
including spreadsheets. Each spreadsheet is represented by
a plurality of chunks, where each chunk encompasses a
range of cells in the spreadsheet. The cloud storage system
maintains a set of chunks for the spreadsheet. Each user with
write access to the spreadsheet may load chunks from the
cloud storage system, where they are locally stored. Each
client computer can then dynamically change its locally-
stored set of chunks independent from the cloud storage
system and other users. Any individual chunk in one set of
chunks may or may not share the same attributes as any
individual chunk in another set of chunks. A mutation log
associated with the spreadsheet is stored on the cloud
storage system. The mutation log records all mutations, or
edits, made to the spreadsheet by a number of users with
write access to the spreadsheet. The cloud storage system
receives mutations from users, records them in the mutation
log, and then broadcasts the mutations to other collaborators.
When a user on a client computer requests the display of a
range of cells of a spreadsheet stored on the cloud storage
system, the cloud storage system applies the mutations
stored in the mutation log to one or more of its chunks that
span the range of cells of the spreadsheet requested. The
cloud storage system sends the updated chunks to the client

30

35

40

45

50

2

computer for display. The chunk boundaries for each user
may be dynamically adjusted depending on the mutations
received from each collaborator. The size of the chunks may
be based on the memory and connection capabilities of the
client computer associated with the chunks.

One aspect described herein discloses a method for man-
aging a dynamically-sized chunked spreadsheet model on a
server. The method includes creating, on the server, a
plurality of chunks representing a spreadsheet, where a first
chunk in the plurality of chunks includes a first range of cells
in the spreadsheet. The method further includes storing on
the server a mutation log for the spreadsheet, and receiving
a first plurality of mutations from a plurality of client
computers, where the first plurality of mutations are stored
in the mutation log. The method further includes applying
the first plurality of mutations to the first chunk in response
to a first client computer in the plurality of client computers
requesting the first range of cells, and sending the first chunk
to the first client computer.

Another aspect described herein discloses a system for
managing a dynamically-sized chunked spreadsheet model,
the system including a server. The server is configured to
communicate with a plurality of client computers using a
communication connection, create a plurality of chunks
representing a spreadsheet, where a first chunk in the plu-
rality of chunks includes a first range of cells in the spread-
sheet, and store a mutation log for the spreadsheet. The
server is further configured to receive a first plurality of
mutations from the plurality of client computers, where the
first plurality of mutations are stored in the mutation log,
apply the first plurality of mutations to the first chunk in
response to a first client computer in the plurality of client
computers requesting the first range of cells, and send the
first chunk to the first client computer over the communi-
cation connection.

BRIEF DESCRIPTION OF THE DRAWINGS

The methods and systems may be better understood from
the following illustrative description with reference to the
following drawings in which:

FIG. 1 shows a client-server system for managing a
dynamically-sized chunked spreadsheet model in accor-
dance with an implementation as described herein;

FIG. 2 shows the components of a server configured for
managing a dynamically-sized chunked spreadsheet model
in accordance with an implementation as described herein;

FIG. 3 shows a spreadsheet with dynamically-sized
chunks in accordance with an implementation as described
herein;

FIG. 4 shows a mutation log for a spreadsheet with
dynamically-sized chunks in accordance with an implemen-
tation as described herein;

FIG. 5 shows another spreadsheet with dynamically-sized
chunks in accordance with an implementation as described
herein;

FIG. 6 shows a dependency graph for a spreadsheet with
dynamically-sized chunks in accordance with an implemen-
tation as described herein;

FIG. 7 shows another spreadsheet with dynamically-sized
chunks in accordance with an implementation as described
herein;

FIG. 8 shows another dependency graph for a spreadsheet
with dynamically-sized chunks in accordance with an imple-
mentation as described herein;

US 9,462,037 B2

3

FIG. 9 shows a method for managing a dynamically-sized
chunked spreadsheet model in accordance with an imple-
mentation as described herein; and

FIG. 10 shows another method for managing a dynami-
cally-sized chunked spreadsheet model in accordance with
an implementation as described herein.

DETAILED DESCRIPTION

To provide an overall understanding of the systems and
methods described herein, certain illustrative embodiments
will now be described, including systems and methods for
managing a dynamically-sized chunked spreadsheet model
on a cloud storage system. However, it will be understood
that the systems and methods described herein may be
adapted and modified as is appropriate for the application
being addressed and that the systems and methods described
herein may be employed in other suitable applications, and
that such other additions and modifications will not depart
from the scope thereof. In particular, a server or system as
used in this description may be a single computing device or
multiple computing devices working collectively and in
which the storage of data and the execution of functions are
spread out among the various computing devices.

Aspects of the systems and methods described herein
provide a cloud storage system capable of creating, storing,
and managing an electronic document with dynamically-
sized chunks. An exemplary electronic document that may
be represented by dynamically-sized chunks is a spread-
sheet, but presentation documents, word processing docu-
ments, or other electronic documents may also represented
by dynamically-sized chunks. A spreadsheet may be repre-
sented by one or more chunks, where each chunk encom-
passes a range of cells in the spreadsheet. One or more
servers hosting a cloud storage system maintains a set of
chunks for the spreadsheet. Each user with write access to
the spreadsheet may load chunks from the cloud storage
system, where they are locally stored. Each client computer
can then dynamically change its locally-stored set of chunks
independent from the cloud storage system and other users.
All chunks are initially empty. A mutation log is associated
with the spreadsheet and stored on the server. The mutation
log records all mutations made by users to the spreadsheet
to any chunk of the spreadsheet. When a user on a client
computer requests a range of cells of the spreadsheet from
the server, the server applies all the mutations stored in the
mutation log to one or more of its chunks representing the
range of cells of the spreadsheet requested and sends the
copies of the chunks to the client computer. Each chunk is
also associated with a dependency graph, which stores the
dependencies each cell in the chunk has on other cells. To
improve chunk loading performance, snapshots of chunks
may be stored and associated with the chunks, where the
snapshot captures a chunk at a certain time. This allows the
server to only apply mutations occurring after the snapshot
rather than starting from an empty chunk. For example, a
chunk may be associated with a time-ordered series of
snapshots and the cloud storage system utilizes the most
recent snapshot to generate an up-to-date version of the
chunk. Older snapshots may be used as records of previous
versions of the chunk.

A cloud storage system stores files for users and allows
users to view, edit, share, and download those files using
client computers connected to the cloud storage system over
a remote network. One type of file that a cloud storage
system may store is a spreadsheet. FIG. 1 illustrates a
client-server system, where the server supports a cloud

10

15

20

25

30

35

40

45

50

55

60

65

4

storage system for storing spreadsheets and other files.
System 100 includes one or more servers 102 which col-
lectively provide a cloud storage system for storing files
such as spreadsheet file 104. System 100 also includes a
number of client computers 106a through 1064 which
connect to servers 102 through a remote network, such as the
Internet. Each one of client computers 106a through 1064
may be a desktop computer, laptop computer, mobile device,
tablet, or any other computing device capable of connecting
with servers 102. The remote network connection may be a
wired or wireless Internet connection, local area network
(LAN), wide area network (WAN), Wi-Fi network, Ethernet,
or any other type of known connection.

A cloud storage system may be configured to create and
store a spreadsheet model using dynamically-sized chunks.
First, a general cloud storage system is described in more
detail. Server 200 in FIG. 2 shows an example of a server for
use in a cloud storage system. A cloud storage system may
include a number of servers that collectively provide the
cloud storage service. Server 200 includes a central process-
ing unit (CPU) 202, read only memory (ROM) 204, random
access memory (RAM) 206, input/output interface 208, data
store 210, and bus 212. Server 200 may have additional
components that are not illustrated in FIG. 2. Bus 212 allows
the various components of server 200 to communicate with
each other. Input/output interface 208 allows the server 200
to communicate with other devices, such as client computers
or other servers in the cloud storage system. Data store 210
may store, among other things, files belonging to users of the
cloud storage system. Data store 210 also stores dynami-
cally-sized chunks for each user accessing a spreadsheet
stored on the server, a dependency graph for each chunk, and
a mutation log for each spreadsheet. Users connect with
server 200 through input/output interface 208 to access files
stored in data store 210.

Data store 210 for providing cloud storage services may
be implemented using non-transitory computer-readable
media. In addition, other programs executing on server 200
may be stored on non-transitory computer-readable media.
Examples of suitable non-transitory computer-readable
media include all forms of non-volatile memory, media and
memory devices, including, by way of example only, semi-
conductor memory devices, e.g., EPROM, EEPROM, and
flash memory devices; magnetic disks, e.g., internal hard
disks or removable disks; magneto-optical disks; and read-
able, once-writable, or rewriteable CD-ROM and DVD-
ROM disks.

A spreadsheet stored on a cloud storage system may be
represented by one or more chunks. FIG. 3 shows an
example spreadsheet 300 with dynamically-sized chunks.
Spreadsheet 300 as illustrated has rows 1 through 14 and
columns A through E, although a spreadsheet may include
any number of rows and columns. The cloud storage system
may represent the entire spreadsheet 300 using one or more
chunks, where each chunk represents a range of cells in the
spreadsheet. In FIG. 3, chunk 302 represents rows 1 through
7 and chunk 304 represents rows 8 through 14. Chunks may
represent any range of rows, columns, or a combination of
rows and column ranges. For example, a chunk may repre-
sent the first 1,000 rows of a spreadsheet, the second 1,000
rows of a spreadsheet, the first 1,000 columns of the spread-
sheet, or a range of cells covered by rows 1 through 1,000
and columns 100 through 200. For a small spreadsheet with
100 rows and 5 columns, the server may only create one
chunk. For a large spreadsheet with 10,000 rows and 20
columns, the server may create 10 chunks, each spanning
1,000 rows. A spreadsheet file may include a number of

US 9,462,037 B2

5

individual sheets, each having its own tab, arranged in a
“workbook” structure. Chunks may be created for each sheet
within the spreadsheet file.

The server maintains a master set of chunks for a spread-
sheet. Each user with write access to the spreadsheet may
load chunks from the cloud storage system, where they are
locally stored. Each client computer can then dynamically
change its locally-stored set of chunks independent from the
cloud storage system and other users. The server may
initially set the chunks for each user to be identical, but the
size and range of the chunks may be further customized by
the client computer and may be based on the capabilities of
each client computer that accesses the spreadsheet. For
example, if the client computer is a desktop computer with
a large cache, the chunk sizes may be large. If the client
computer is a tablet or mobile device with smaller memory
capabilities, the chunk sizes may be small. The chunk sizes
may also be based on the bandwidth of the connection
between the client computer and the server. The size and
range of the chunks are not static, but may be dynamically
changed by the client computer as edits are made to the
spreadsheet. For example, if a user adds many rows to a
portion of a spreadsheet covered by one chunk, the client
computer may split the chunk into two chunks. If a user
deletes many rows from a portion of a spreadsheet covered
by one chunk, the client computer may merge the reduced
chunk with another chunk. If a user adds one or deletes one
row in a chunk, the client computer may adjust the bound-
aries of adjacent chunks. There may be a tolerance range so
that repeated insertion and deletion of cells does not repeat-
edly invoke the merge and split functions, or the boundary
adjustment of chunks. The effects of these edits, or muta-
tions, on a chunked spreadsheet model will be discussed in
further detail below. Each chunk has an associated ID to
uniquely identify it. One of the chunks in the spreadsheet is
designated to store metadata information about the entire
spreadsheet, such as total number of rows and columns,
name of the spreadsheet, chunk IDs, and any other com-
monly used metadata fields. This chunk may be the first
chunk that is normally loaded when a user requests the
spreadsheet (e.g. the chunk encompassing row 1 and column
1).

In addition to representing a spreadsheet by one or more
dynamically-sized chunks, a mutation log is associated with
the spreadsheet. FIG. 4 shows an example of a mutation log
400. The mutation log may apply to all chunks of a spread-
sheet, so only one log is stored per spreadsheet. Alterna-
tively, each chunk of the spreadsheet may have an associated
mutation log. Mutation log 400 stores mutations, or edits,
that all users with write access to the spreadsheet send to the
cloud storage system, in the order in which they are
received. The cloud storage system stores the mutations and
also propagates the mutations to each collaborator that is
also working on the same spreadsheet. These edits may be
to set the value of cells, delete cell values, enter formulae
into cells, cut, copy or paste values, add or delete rows and
columns, sorting row or column values, filtering row or
column values, linking to external data, performing a cal-
culation, or any other operation permissible in an electronic
spreadsheet. For example, mutation log 400 stores a number
of set value commands, such as “Set A2=2" for mutation A,
“Set A3=4” for mutation B, and “Set B3=A2+A3” for
mutation C. Mutation log 400 may also store row addition
and deletion mutations, such as “Delete Row 6” for mutation
I and “Add Row 117 for mutation J. Other mutations not
shown in FIG. 4 may also be stored in mutation log 400. In
case of conflicting mutations or mutations that occur at the

10

15

20

25

30

35

40

45

50

55

60

65

6

same time, the server may engage various conflict resolution
mechanisms to determine the proper order of mutations. The
mutations correlate directly to cells, rows or columns, with-
out regard to chunks. This allows the size and range of
chunks to change without affecting mutation log 400. The
cloud storage system may assign a revision number to each
mutation received. The syntax of the mutations is not limited
to that shown in FIG. 4 but may encompass any known
spreadsheet syntax.

FIG. 4 also shows two snapshots, one taken after mutation
E and one taken after mutation J. Snapshots are copies of a
chunk generated at a certain time with all the mutations
occurring before that time incorporated into the chunk. For
example, snapshot S1 of a chunk incorporates mutations
A-E while snapshot S2 of a chunk incorporates mutations
A-J. Snapshots are created by the cloud storage system to
lessen the time it takes to load a chunk to a user. For
example, when a user requests a chunk from a cloud storage
system after mutation G has been entered, the cloud storage
system takes an empty initial copy of the chunk and applies
mutations A-G stored in mutation log 400 to the empty
chunk to obtain the current state of the chunk, and then sends
the chunk to the client computer. If the cloud storage system
has created and stored snapshot S1, then it only needs to
apply mutations F and G to snapshot S1 of the chunk before
sending the copy to the client computer.

When a spreadsheet is first generated in a cloud storage
system, one or more chunks are created that represent the
spreadsheet. Initially, all the cells in every chunk have no
value (i.e. the spreadsheet is empty), such as shown in FIG.
3. As the cloud storage system receives mutations for the
spreadsheet from any number of users, the mutations are
stored in a mutation log associated with the spreadsheet,
such as shown in FIG. 4. The cloud storage system also
sends each mutation to the other collaborators who are
working on the same spreadsheet, either individually or in
batches. When a client computer requests a range of cells of
the spreadsheet encompassed by a chunk, the cloud storage
system applies all the mutations received up to that point and
applies it to an empty version of the chunk (or a snapshot if
one has been created). After all the mutations have been
applied, a copy of the chunk is sent to the client computer.
For example, mutation log 400 depicted in FIG. 4 is asso-
ciated with empty spreadsheet 300 in FIG. 3. One or more
users send mutations A-E shown in FIG. 4 to the cloud
storage system. The cloud storage system stores these muta-
tions in mutation log 400. Then a user on a client computer
requests a copy of chunk 302 or chunk 304 of spreadsheet
300. Alternatively, the cloud storage system may save a
snapshot of both chunks after mutation E has occurred, such
as snapshot S1 illustrated in FIG. 4. In either situation,
spreadsheet 500 shown in FIG. 5 depicts the current state of
both chunks after mutation E. The client computer stores the
copy of the chunk received from the cloud storage system in
local memory. The server sends the client computer muta-
tions made by other collaborators on the spreadsheet, which
are applied to the chunk at the client computer. If the client
computer requires additional portions of the spreadsheet to
be loaded, the client computer makes additional chunk
requests to the cloud storage system.

Spreadsheet 500 includes chunk 502 and chunk 504,
which correspond to chunks 302 and 304 respectively in
FIG. 3, but shown after mutations A-E from mutation log
400 have been applied to the chunks. Mutation A, “Set
A2=2”1s applied to both chunk 502 and chunk 504. Cell A2
is found in chunk 502 and so it is set to the value “2”, as
illustrated. Chunk 504 does not include cell A2, so the

US 9,462,037 B2

7

application of mutation A to chunk 504 results in a null
effect. Mutation B, “Set A3=4”, is also applied to both
chunks but has no effect on chunk 504 because cell A3 is
located in chunk 502. Likewise with mutation C, which sets
cell B3=A2+A3. Mutations D and E, however, produce a
change in chunk 504 but no change in chunk 502. After
mutations A-E are applied to chunks 502 and 504, cell A2
has the value “2”, cell A3 has the value “4”, cell B3 has the
value “6” (A2+A3), cell C10 has the value “8” (A2xA3),
and cell E9 has the value “14” (B3+C10).

Each chunk is associated with a dependency graph which
records any dependent relationships of cells within the
chunk with other cells, either within the same chunk or in a
different chunk. FIG. 6 shows two such dependency graphs,
graph 602 associated with chunk 502 and graph 604 asso-
ciated with chunk 504. When the cloud storage system
receives a mutation from a user, the cloud storage system
applies the mutations to the dependency graphs for each
chunk to ensure that relationships between cells are properly
preserved. Thus mutations A-E in mutation log 400 are
applied to chunks 502 and 504 as well as to graphs 602 and
604. For example, mutation C specifies that the value of cell
B3 in chunk 502 depends on the values of cells A2 and A3
and so it is recorded in graph 602 as “A2:A3—+B3”. In chunk
504, the values of cells C10 and E9 depend on the values of
other cells in both chunk 502 and chunk 504, so the
dependency relationship for both cells is recorded in both
graphs 602 and 604. The structure and syntax of dependency
graphs 600 is not limited to what is shown in FIG. 6 but may
encompass any known structure and syntax for expressing
relationships between spreadsheet cells. For example, the
dependency graphs may be stored as an R-tree. When a user
requests a chunk to be loaded on the user’s client computer,
the cloud storage system applies all the mutations to chunk
and to its corresponding dependency graph and sends the
chunk and the dependency graph to the client computer. The
client computer queries the dependency graph to determine
if any cells are dependent on cells in other chunks. The client
computer may already have copies of the other chunks that
are necessary to determine the cell values stored in local
memory, but if the client computer does not have one or
more necessary chunks, the client computer requests those
chunks from the cloud storage system. The cloud storage
system applies the mutations in the mutation log to those
chunks and sends them to the client computer. Once the
client computer has all the chunks necessary to determine
the value of the cells in the first chunk, the client computer
calculates the actual cell values for the chunk.

At a later time after mutations A-E were received, the
cloud storage system receives mutations F-J for the spread-
sheet and records the mutations in mutation log 400. Spread-
sheet 700 in FIG. 7 shows the state of chunks 702 and 704
(which correspond to chunks 302 and 304 respectively) after
mutations A-J have been applied. For example, spreadsheet
700 may represent a snapshot of chunks 702 and 704 taken
after mutation J has been received (snapshot S2 in FIG. 4),
or a client computer may request a version of spreadsheet
700 after mutation J has been received and the cloud storage
system returns chunks 702 and 704. The cloud storage
system may start with empty chunks 302 and 304 and apply
mutations A-J to derive chunks 702 and 704. Alternatively,
if a snapshot of the chunks exists, the cloud storage system
may start with the snapshots and apply only the mutations
that are received after the snapshots. For example, chunks
502 and 504 may represent snapshots of the chunks after
mutation E. When a client computer requests either chunk
702 or 704 after mutation] has been received, the cloud

10

20

40

45

8

storage system applies mutations F-J to snapshot chunks 502
or 504 and returns chunk 702 or 704, respectively.

Mutations F, G, and H in mutation log 400 are set value
mutations and are applied to both chunk 702 and chunk 704,
producing a null effect in any chunks which are not affected
by the mutations. Thus the value of cell D1 is set to “3”, the
value of D12 is set to “12”, and the value of A3 is set to “5”.
Mutation I deletes row 6 of spreadsheet 700. When a row is
deleted, the boundaries of chunks may change. For example,
because row 6 was within chunk 702 before it was deleted,
chunk 702 encompasses new rows 1-6 after the deletion of
row 6 rather than rows 1-7 as originally defined. All rows
below row 6 are shifted up one row. Thus chunk 704 now
encompasses rows 7 through 13 and all the cell values in
chunk 704 are shifted up one row. Mutation J inserts a new
row as row 11, which affects chunk 704 but not chunk 702.
Chunk 704 now encompasses rows 7 through 14 and the
values of any cells at or below old row 11 are shifted down
one row. After mutation J has been applied, the value of cell
C9 in chunk 704 is now set as A2xA3. C10 was originally
set to this value, but the deletion of row 6 shifted the value
up one row to C9. Likewise, the original value of E9(B3+
C10) has been shifted to E8. The value of D12 was originally
set to “12”, was shifted up one row by the deletion of row
6, and then shifted down one row by the addition of row 1.
Thus cell D12 still contains the value “12”.

Dependency graphs 802 and 804 in FIG. 8 show the
dependency relationships for cells in chunks 702 and 704
respectively. Mutations F-J, in addition to being applied to
the chunks, are also applied to graphs 802 and 804. Both
graphs have been affected by the row deletions and addi-
tions. For example, cell C9 rather than cell C10 depends on
cells A2 and A3 because of the deletion of row 6. Likewise,
cell E8 rather than cell E9 depends on cells B3 and C9
because of the deletion of row 6. Once dependency graphs
800 are updated with the mutations, the cloud storage system
may send the dependency graphs along with a copy of the
chunks when requested by a user. In this manner, FIGS. 3
through 8 show the operation of dynamically-sized chunks
for a spreadsheet model implemented in a cloud storage
system.

Methods for creating, storing, and delivering a dynami-
cally-sized chunked spreadsheet model on a cloud storage
system are now described. One method for managing a
dynamically-sized chunked spreadsheet model on a server is
illustrated in FIG. 9. Method 900 includes creating, on the
server, a plurality of chunks representing a spreadsheet,
where a first chunk in the plurality of chunks includes a first
range of cells in the spreadsheet. The method further
includes storing on the server a mutation log for the spread-
sheet, and receiving a first plurality of mutations from a
plurality of client computers, where the first plurality of
mutations are stored in the mutation log. The method further
includes applying the first plurality of mutations to the first
chunk in response to a first client computer in the plurality
of client computers requesting the first range of cells, and
sending the first chunk to the first client computer.

Method 900 begins when a server hosting a cloud storage
system creates a spreadsheet, the spreadsheet including one
or more chunks, illustrated at 902. One or more servers such
as server 200 in FIG. 2 may host the cloud storage system.
This may be in response to a user saving a spreadsheet on the
cloud storage system. Each chunk represents a range of cells
in the spreadsheet, such as chunks 302 and 304 in spread-
sheet 300 shown in FIG. 3. For example, a chunk may
represent a number of rows in the spreadsheet, or a number
of columns in a spreadsheet. The spreadsheet file may be a

US 9,462,037 B2

9

workbook that includes a number of separate sheets and
chunks are created for each sheet in the workbook. The
spreadsheet may initially have only one chunk if the spread-
sheet is empty. The server designates one chunk to store
metadata information about the entire spreadsheet, such as
total number of rows and columns, name of the spreadsheet,
chunk IDs, and any other commonly used metadata fields.
The server maintains a set of chunks for the spreadsheet.
Each user with write access to the spreadsheet may load
chunks from the cloud storage system, where they are
locally stored. Each client computer can then dynamically
change its locally-stored set of chunks independent from the
cloud storage system and other users. Thus changes to the
size and boundaries of one user’s chunks do not affect the
size or boundaries other users’ chunks. For example, differ-
ent users may be on client computers with different memory
and connection capabilities and the client computer may
optimize the chunk size for each client computer. The
chunks are stored on the server in lieu of the full spreadsheet.

After a plurality of chunks for a spreadsheet are created,
the server stores a mutation log associated with the spread-
sheet, illustrated at 904. The mutation log records all muta-
tions, or edits, made by users with write access to the
spreadsheet. Mutation log 400 shown in FIG. 4 is an
example of a mutation log stored on the server. The server
receives a plurality of mutations from one or more users
using client computers to work on the spreadsheet, illus-
trated at 906. Mutations may include commands to set cell
values, commands to insert or delete rows or columns, cut,
copy, and past commands, filtering row or column values,
linking to external data, performing a calculation, and any
other standard spreadsheet operations. The server may
dynamically modify the range of cells of a chunk based on
one or more of the mutations. For example, the server may
adjust chunk row boundaries if it receives insert or delete
row commands. The mutation log records all mutations in
the order in which they are received. In case of conflicting
mutations or mutations that occur at the same time, the
server may engage various conflict resolution mechanisms
to determine the proper order of mutations. The server also
sends each received mutation to other collaborators who are
also working on the spreadsheet. The mutations stored in the
mutation log do not have any chunk information associated
with them—they are independent of the chunks. This allows
the mutations to be stored on a single mutation log appli-
cable to all chunks. The mutations are not automatically
applied to the chunks when they are received, but rather are
stored in the mutation log. Each chunk may also have an
associated dependency graph, which records the relation-
ships cells within the chunk have with other cells. The
plurality of mutations are applied to the dependency graph
of each chunk so that the dependency relationships are
up-to-date. Examples of dependency graphs in include
graphs 602 and 604 shown in FIG. 6 and graphs 802 and 804
shown in FIG. 8.

After a plurality of mutations are received by the server
and stored in the mutation log, the server receives a request
from a user on a client computer to send the client computer
a copy of a range of cells of the spreadsheet, illustrated at
908. For example, this may occur when a client computer
requests a range of cells of the spreadsheet encompassed by
a first chunk of which the client computer does not currently
have a copy. When the request is received by the server, the
server applies all the mutations stored in the mutation log to
the first chunk on the server in the order in which they are
stored. The chunk may initially be empty, so the mutations
represent all the edits made by all users to that chunk of the

10

15

20

25

30

35

40

45

50

55

60

65

10

spreadsheet. When all the mutations have been applied, the
chunk is up-to-date with all user edits. For example, spread-
sheet 500 in FIG. 5 shows up-to-date chunks 502 and 504
after mutations 1-5 listed in mutation log 400 have been
applied to the chunk. The server then sends the up-to-date
chunk to the client computer, illustrated at 910. If the client
computer requests another range of cells of the spreadsheet
encompassed by another chunk, the server applies the plu-
rality of mutations to this additional chunk and sends it to the
client computer. If the client computer requests a range of
cells of the spreadsheet encompassed by multiple chunks,
the server applies the plurality of mutations to all the
necessary chunks and sends them to the client computer.
Unless there are snapshots of the chunk available, the server
applies all of the plurality of mutations to any chunk when
that chunk is requested by the client computer. In this
manner, the server provides a method for managing a
dynamically-sized chunked spreadsheet model.

Another method for managing a dynamically-sized
chunked spreadsheet model on a server may use snapshots
of chunks to decrease the time it takes to generate a chunk
for sending to a client computer, as illustrated in FIG. 10.
Method 1000 includes creating, on the server, a first plurality
of chunks representing a spreadsheet, where a first chunk in
the plurality of chunks includes a first range of cells in the
spreadsheet, and storing on the server a mutation log for the
spreadsheet. The method further includes receiving a first
plurality of mutations from a plurality of client computers,
where the first plurality of mutations are stored in the
mutation log, and storing a snapshot of the first chunk, where
the first plurality of mutations are applied to the first chunk
to obtain the snapshot. The method further includes receiv-
ing a second plurality of mutations from the plurality of
client computers, where the second plurality of mutations
are stored in the mutation log. The method further includes
applying the second plurality of mutations to the snapshot to
obtain a modified snapshot in response to a first client
computer in the plurality of client computers requesting the
first range of cells, and sending the modified snapshot to the
first client computer.

Method 1000 begins when a server hosting a cloud
storage system creates a spreadsheet, the spreadsheet includ-
ing one or more chunks, illustrated at 1002. One or more
servers such as server 200 in FIG. 2 may host the cloud
storage system. This may be in response to a user saving a
spreadsheet on the cloud storage system. Each chunk rep-
resents a range of cells in the spreadsheet, such as chunks
302 and 304 in spreadsheet 300 shown in FIG. 3. For
example, a chunk may represent a number of rows in the
spreadsheet, or a number of columns in a spreadsheet. The
spreadsheet file may be a workbook that includes a number
of separate sheets and chunks are created for each sheet in
the workbook. The spreadsheet may initially have only one
chunk if the spreadsheet is empty. The server designates one
chunk to store metadata information about the entire spread-
sheet, such as total number of rows and columns, name of
the spreadsheet, chunk IDs, and any other commonly used
metadata fields. The server maintains a set of chunks for the
spreadsheet. Each user with write access to the spreadsheet
may load chunks from the cloud storage system, where they
are locally stored. Each client computer can then dynami-
cally change its locally-stored set of chunks independent
from the cloud storage system and other users. Thus changes
to the size and boundaries of one user’s chunks do not affect
the size or boundaries other users’ chunks. For example,
different users may be on client computers with different
memory and connection capabilities and the client computer

US 9,462,037 B2

11

may optimize the chunk size for each client computer. The
chunks are stored on the server in lieu of the full spreadsheet.

After a plurality of chunks for a spreadsheet are created,
the server stores a mutation log associated with the spread-
sheet, illustrated at 1004. The mutation log records all
mutations, or edits, made by users with write access to the
spreadsheet. Mutation log 400 shown in FIG. 4 is an
example of a mutation log stored on the server. The server
receives a first plurality of mutations from one or more users
using client computers to work on the spreadsheet, illus-
trated at 1006. Mutations may include commands to set cell
values, commands to insert or delete rows or columns, cut,
copy and paste commands, filtering row or column values,
linking to external data, performing a calculation, and any
other standard spreadsheet operations. The server may
dynamically modify the range of cells of a chunk based on
one or more of the mutations. For example, the server may
adjust chunk row boundaries if it receives insert or delete
row commands. The mutation log records all mutations in
the order in which they are received. In case of conflicting
mutations or mutations that occur at the same time, the
server may engage various conflict resolution mechanisms
to determine the proper order of mutations. The server also
sends each received mutation to other collaborators who are
also working on the spreadsheet. The mutations stored in the
mutation log do not have any chunk information associated
with them—they are independent of the chunks. This allows
the mutations to be stored on a single mutation log appli-
cable to all chunks. The mutations are not automatically
applied to the chunks when they are received, but rather are
stored in the mutation log. Each chunk may also have an
associated dependency graph, which records the relation-
ships cells within the chunk have with other cells. The first
plurality of mutations is applied to the dependency graph of
each chunk so that the dependency relationships are up-to-
date. Examples of dependency graphs in include graphs 602
and 604 shown in FIG. 6 and graphs 802 and 804 shown in
FIG. 8.

After the first plurality of mutations are received by the
server and stored in the mutation log, the server stores a
snapshot of a first chunk, illustrated at 1008. A snapshot
captures the state of the first chunk after the first plurality of
mutations are applied to the first chunk. For example,
chunks 502 and 504 in FIG. 5 may be snapshots of chunks
302 and 304 respectively taken after the server receives
mutations A-E listed in mutation log 400. The server takes
a copy of the first chunk and applies the first plurality of
mutations to obtain the snapshot. The snapshot is stored on
the server and associated with the first chunk. The snapshot
allows the server to decrease the amount of time necessary
to generate an up-to-date version of the first chunk when a
client computer requests a copy of the hunk. After the
snapshot has been stored, the server receives an additional
second plurality of mutations from the one or more client
computers, illustrated at 1010. The second plurality of
mutations are also stored in the mutation log. For example,
mutations F-J listed in mutation log 400 shown in FIG. 4
may be received after the server takes a snapshot incorpo-
rating mutations A-E. The second plurality of mutations are
applied to the dependency graph of each chunk so that the
dependency relationships are up-to-date.

After the second plurality of mutations are received by the
server and stored in the mutation log, the server receives a
request from a user on a client computer to send the client
computer the first chunk, illustrated at 1012. For example,
this may occur when a client computer requests a range of
cells of the spreadsheet encompassed by the first chunk.

25

35

40

45

50

12

When the request is received by the server, the server applies
the second plurality of mutations stored in the mutation log
to the snapshot. Applying only the second plurality of
mutations to the snapshot takes less time than applying both
the first and second plurality of mutations to the initial first
chunk. Both processes would lead to the same result. A
modified snapshot is obtained after the second plurality of
mutations have been applied to the snapshot. For example,
mutations F-J listed in mutation log 400 may be applied to
snapshot 502 in FIG. 5, where snapshot 502 already incor-
porates mutations A-E. The result is modified snapshot 702
shown in FIG. 7, which may also be obtained if mutations
A-J were applied to empty chunk 302 in FIG. 3. The server
sends the modified snapshot to the client computer, illus-
trated at 1014. The server may take additional snapshots of
the first chunk as more mutations are received. If a client
computer requests a copy of the first chunk, the server takes
the most recent snapshot of the first chunk and only applies
mutations received after that snapshot was stored. The server
sends this modified snapshot to the client computer. Because
each client computer maintains separate sets of chunks, each
chunk within each set may have one or more snapshots
associated with it. In this manner, the server provides a
method for managing a dynamically-sized chunked spread-
sheet model using snapshots to decrease the time to deliver
chunks to a client computer.

It will be apparent that aspects of the systems and methods
described herein may be implemented in many different
forms of software, firmware, and hardware in the imple-
mentations illustrated in the figures. The actual software
code or specialized control hardware used to implement
aspects consistent with the principles of the systems and
method described herein is not limiting. Thus, the operation
and behavior of the aspects of the systems and methods were
described without reference to the specific software code—it
being understood that one of ordinary skill in the art would
be able to design software and control hardware to imple-
ment the aspects based on the description herein.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous.

What is claimed is:
1. A method for managing a dynamically-sized chunked
spreadsheet model on a server, the method comprising:
creating, on the server, a plurality of chunks representing
a spreadsheet, wherein a first chunk in the plurality of
chunks comprises a first range of cells in the spread-
sheet;
storing on the server a mutation log for the spreadsheet;
receiving a first plurality of mutations from a plurality of
client computers, wherein the first plurality of muta-
tions are stored in the mutation log;
applying the first plurality of mutations to the first chunk
in response to a first client computer in the plurality of
client computers requesting the first range of cells;
modifying the range of cells that comprise the first chunk
based on the first plurality of mutations, wherein:
when at least one of the plurality of mutations com-
prises deleting at least one row from a portion of the
spreadsheet covered by the first chunk, determining
whether the application of the at least one of the
plurality of mutations reduces the size of the first

US 9,462,037 B2

13
chunk below a predetermined threshold, and merg-
ing the first chunk with a different chunk from the
plurality of chunks, or,
when at least one of the plurality of mutations com-
prises adding at least one row to a portion of the
spreadsheet covered by the first chunk, determining
whether the application of the at least one of the
plurality of mutations increases the size of the first
chunk above the predetermined threshold, and split-
ting the first chunk into two chunks; and

sending the first chunk to the first client computer.

2. The method of claim 1, wherein a second chunk in the
plurality of chunks comprises a second range of cells in the
spreadsheet, the method further comprising:

applying the first plurality of mutations to the second

chunk in response to the first client computer request-
ing the second range of cells; and

sending the second chunk to the first client computer.

3. The method of claim 2, wherein the first client com-
puter requests the first and second range of cells at the same
time.

4. The method of claim 1, wherein the range of cells of the
first chunk is a range of rows in the spreadsheet.

5. The method of claim 1, wherein a first mutation in the
first plurality of mutations is selected from the group con-
sisting of a cut command, a copy command, a paste com-
mand, a set value command, an insert row command, a
delete row command, an insert column command, a delete
column command, a filter command, a sort command, an
external link command, and a calculation command.

6. The method of claim 1, wherein the first chunk is
associated with a dependency graph.

7. The method of claim 6, wherein receiving the first
plurality of mutations includes applying the first plurality of
mutations to the dependency graph.

8. The method of claim 6, wherein the dependency graph
is sent to the first client computer along with the first chunk.

9. The method of claim 1, the method further comprising:

storing a snapshot of the first chunk, wherein the first

plurality of mutations are applied to the first chunk to
obtain the snapshot;

receiving a second plurality of mutations from the plu-

rality of client computers, wherein the second plurality
of mutations are stored in the mutation log;

applying the second plurality of mutations to the snapshot

to obtain a modified snapshot in response to the first

client computer requesting the first range of cells;

modifying the range of cells that comprise the first chunk

based on the second plurality of mutations, wherein:

when at least one of the plurality of mutations com-
prises deleting at least one row from a portion of the
spreadsheet covered by the first chunk, determining
whether the application of the at least one of the
plurality of mutations reduces the size of the first
chunk below a predetermined threshold, and merg-
ing the first chunk with a different chunk from the
plurality of chunks, or,

when at least one of the plurality of mutations com-
prises adding at least one row to a portion of the
spreadsheet covered by the first chunk, determining
whether the application of the at least one of the
plurality of mutations increases the size of the first
chunk above the predetermined threshold, and split-
ting the first chunk into two chunks; and

sending the modified snapshot to the first client computer.

10

15

20

25

30

40

45

50

55

60

65

14

10. The method of claim 1, wherein each client computer
in the plurality of client computers maintain separate sets of
the plurality of chunks.

11. The method of claim 1, wherein each mutation in the
first plurality of mutations does not include any information
about the plurality of chunks.

12. A system for managing a dynamically-sized chunked
spreadsheet model, the system comprising:

a server, wherein the server is configured to:

communicate with a plurality of client computers using a

communication connection;

create a plurality of chunks representing a spreadsheet,

wherein a first chunk in the plurality of chunks com-
prises a first range of cells in the spreadsheet;

store a mutation log for the spreadsheet;

receive a first plurality of mutations from the plurality of

client computers, wherein the first plurality of muta-
tions are stored in the mutation log;

apply the first plurality of mutations to the first chunk in

response to a first client computer in the plurality of

client computers requesting the first range of cells;

modify the range of cells that comprise the first chunk

based on the first plurality of mutations, wherein:

when at least one of the plurality of mutations com-
prises deleting at least one row from a portion of the
spreadsheet covered by the first chunk, determine
whether the application of the at least one of the
plurality of mutations reduces the size of the first
chunk below a predetermined threshold, and merge
the first chunk with a different chunk from the
plurality of chunks, or,

when at least one of the plurality of mutations com-
prises adding at least one row to a portion of the
spreadsheet covered by the first chunk, determine
whether the application of the at least one of the
plurality of mutations increases the size of the first
chunk above a predetermined threshold, and split the
first chunk into two chunks; and

send the first chunk to the first client computer over the

communication connection.

13. The system of claim 12, wherein a second chunk in the
plurality of chunks comprises a second range of cells in the
spreadsheet, and wherein the server is further configured to:

apply the first plurality of mutations to the second chunk

in response to the first client computer requesting the
second range of cells; and

send the second chunk to the first client computer.

14. The system of claim 13, wherein the first client
computer requests the first and second range of cells at the
same time.

15. The system of claim 12, wherein the range of cells of
the first chunk is a range of rows in the spreadsheet.

16. The system of claim 12, wherein a first mutation in the
first plurality of mutations is selected from the group con-
sisting of a cut command, a copy command, a paste com-
mand, a set value command, an insert row command, a
delete row command, an insert column command, a delete
column command, a filter command, a sort command, an
external link command, and a calculation command.

17. The system of claim 12, wherein the first chunk is
associated with a dependency graph.

18. The system of claim 17, wherein the server is further
configured to apply the first plurality of mutations to the
dependency graph.

19. The system of claim 17, wherein the dependency
graph is sent to the first client computer along with the first
chunk.

US 9,462,037 B2

15

20. The system of claim 12, wherein the server is further
configured to:

store a snapshot of the first chunk, wherein the first
plurality of mutations are applied to the first chunk to
obtain the snapshot;

receive a second plurality of mutations from the plurality
of client computers, wherein the second plurality of
mutations are stored in the mutation log;

apply the second plurality of mutations to the snapshot to
obtain a modified snapshot in response to the first client
computer requesting the first range of cells;
modify the range of cells that comprise the first chunk
based on the second plurality of mutations, wherein:
when at least one of the plurality of mutations com-
prises deleting at least one row from a portion of the
spreadsheet covered by the first chunk, determine
whether the application of the at least one of the
plurality of mutations reduces the size of the first

16
chunk below a predetermined threshold, and merge,
the first chunk with a different chunk from the
plurality of chunks, or,
when at least one of the plurality of mutations com-
prises adding at least one row to a portion of the
spreadsheet covered by the first chunk, determine
whether the application of the at least one of the
plurality of mutations increases the size of the first
chunk above a predetermined threshold, and split the
first chunk into two chunks; and

send the modified snapshot to the first client computer

over the communication network.

21. The system of claim 12, wherein each client computer
in the plurality of client computers maintain separate sets of
the plurality of chunks.

22. The system of claim 12, wherein each mutation in the
first plurality of mutations does not include any information
about the plurality of chunks.

#* #* #* #* #*

